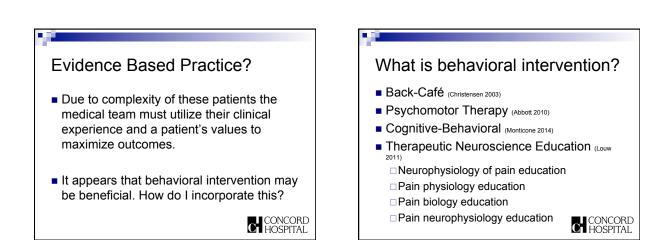

Alison Rushton,¹ Gillian Eveleigh,¹ Emma-Jane Petherick,² Nicola Heneghan,¹ Rosalie Bennett.¹ Gill James.¹ Chris Wricht¹


Conclusions: Inconclusive, very low-quality evidence exists for the effectiveness of physiotherapy management following lumbar spinal fusion. Best practice remains unclear. Limited comparability of outcomes and retrieval of only two trials reflect a lack of research in this area that requires urgent consideration.

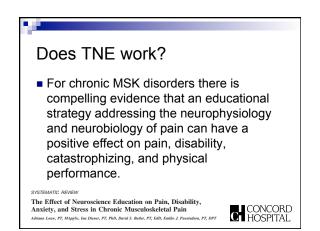
a second									
BACK F	PA	IN	l a	t	6	Mo	ont	hs	
Exercise Behavioural								Std. mean difference	Std. mean difference
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Abbott et al, 201033	-29.4	25.4	54	-35.9	26.1	53	52.8%	0.25 (-0.13 to 0.63)	+
Christensen et al, 200313	4	1.67	26	2	1.5	26	47.2%	1.24 (0.64 to 1.84)	
Total (95% CI)			80			79	100.0%	0.72 (-0.25 to 1.69)	
Heterogeneity: T ² =0.43;	$\chi^2 = 7.5$	51, df =	1 (p=	0.006)	; ² = 8	7%		_	
Test for overall effect: Z =	1.45 (p	=0.15	5)						-2 -1 U 1 Z Favours exercise Favours behavioural
						١v	'ea	r	
							ca		
	Evo	rcise		Roha	vioua			td. mean difference	Std. mean difference
Study or subgroup			Total I				Weight	IV. Random, 95% CI	IV. Random, 95% Cl
	-36.5		54 -		29	53	52.6%	0.05 (-0.33 to 0.43)	
Christensen et al, 200313	3.5		26	2	1.33	26	47.4%	1.04 (0.46 to 1.62)	
Total (95% CI)			80				100.0%	0.52 (-0.45 to 1.49)	
Heterogeneity: $\tau^2 = 0.43$; χ	(*=7.78	3, df = 1	1 (p=0	.005); I	2=875	6			
Test for overall effect: Z=1.									

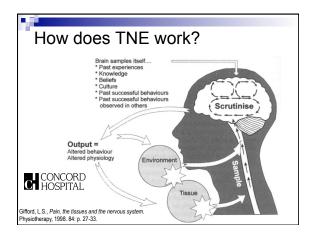
- Evidence suggested that intervention might reduce back pain both short/ long term.
- Behavioral intervention may be more beneficial than an exercise intervention.

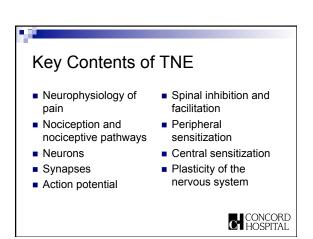
Cognitive Behavioral Therapy

- Activity pacing
- Attention diversion
- Cognitive restructuring
- Goal setting
- Graded exposure
- Maintenance strategies
- Problem-solving strategies

C CONCORD HOSPITAL

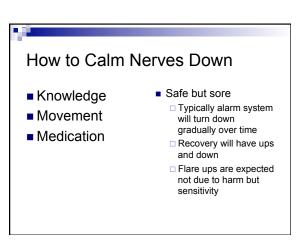

Therapeutic Neuroscience Education

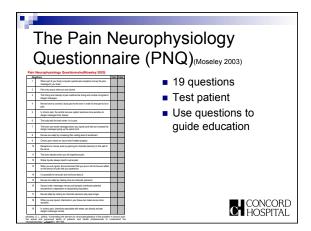

- Altering patients' beliefs to alter their pain experiences.
- Patient's want answers
 What is wrong with me?
 How long will it take?
 - □What can I do for it?
 - □What can you do for it?



CONCORD HOSPITAL

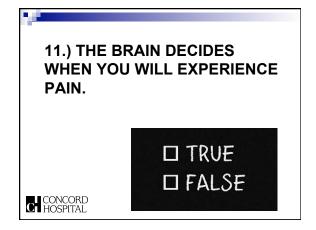
<section-header>

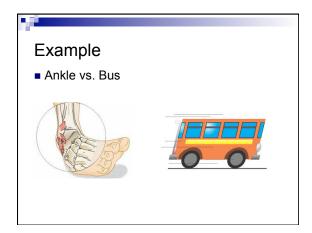

How to Provide TNE One-on-one sessions Provide homework Answer questions and progress Assess patients understanding The Pain Neurophysiology Questionnaire (PNQ) This educational approach should include physical movement especially aerobic exercise.

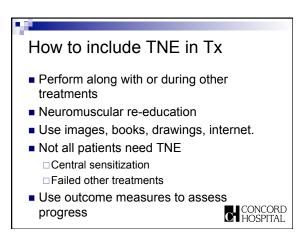

Educational Tools Nerves Prepared pictures Like an alarm system Metaphors Alerts brain of possible danger Hand drawings Once danger is removed normally alarm system will calm back down Workbook with reading/Q&A In 1 out of 4 patients the YouTube videos alarm system stays Pain neurophysiology questionnaire extra sensitive CH CONCORD HOSPITAL

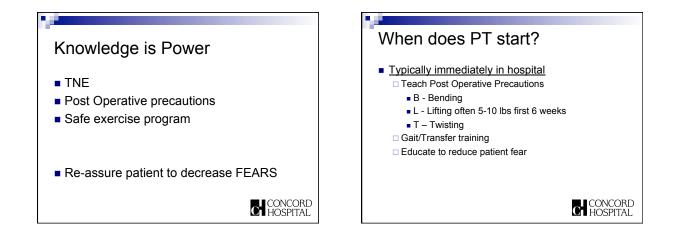
Nerves and your back

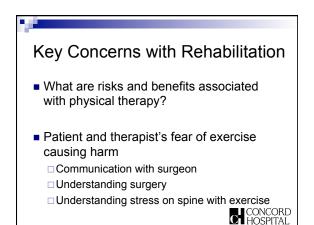
- Once nerves become sensitive it takes less activity to cause nerves to fire off danger messages to brain.
- Key for you to understand is that pain may not be only due to original surgery/back pain, but the increased sensitivity of the nerves in the region.

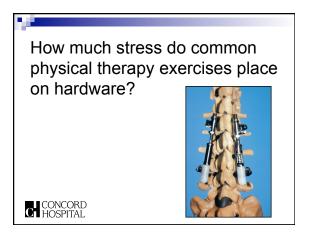


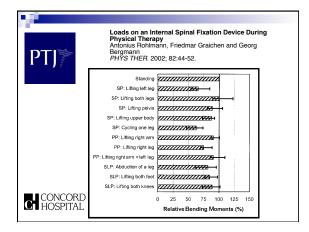


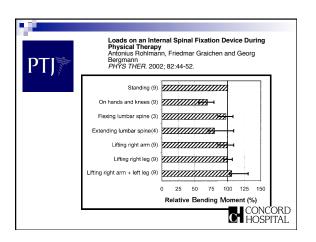


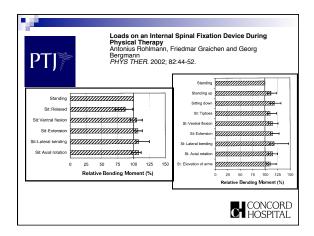

Tissues only send DANGER messages

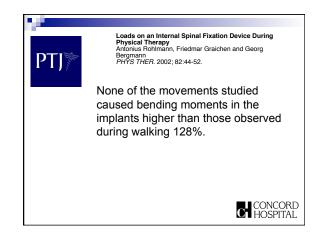

- Eyes: Contain light receptors; not vision
- Ears: Contain vibration receptors; not hearing
- Tissues: Contain nociceptive receptors; not pain
- Tissues: Contain danger receptors; not pain

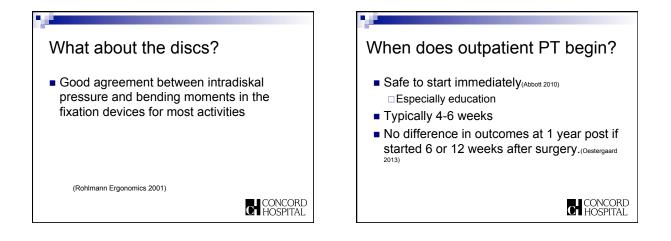


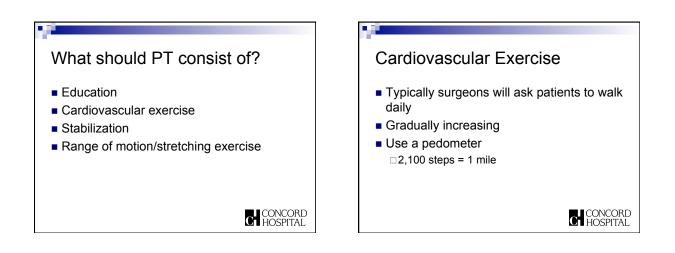


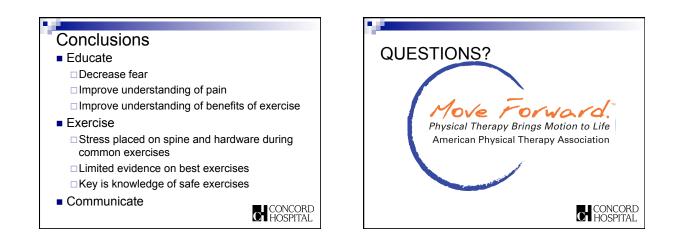


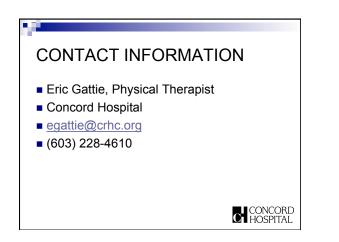











Stabilization

- Co-contraction of multifidus and transverses abdominus to provide segmental stabilization
- Improved function of stabilizing muscles decrease unwanted stress on spine
- No evidence on what is best exercise routine currently

C CONCORD HOSPITAL

ROM/Stretching Minimal research Maximize ROM of adjacent joints to decrease stress on surgical site Hip Thoracic

References

 Abbott AD, Tyni-Lenne R, Hedlund R. Early rehabilitation targeting cognition, behaviour and motor function after lumber fusion. Spine (Phila Pa 1976) 2010;35:848e57.
 Christenser RB, Burger C: Stabilisation surgery for chronic low back pain: Indications, surgical procedures, and outcome. Scand J Rheumatol. 2004;33:210-217

- procedures, and outcome. Scand J Rheumatol. 2004;33:210-217 Christensen FB, Laurberg I, Bunger CE. Importance of the back-cafe concept to rehabilitation aft lumbar spinal tusion: A randomized clinical study with a 2-year follow- up. Spine. 2003;28:2561-2569
- Jumbar spinal fusion: A randomized clinical study with a 2-year follow- up. Spine. 2003;28:2561-2569 Deyo RA, Gray DT, Kreuter W, et al. United States trends in lumbar fusion surgery for degenerative conditions. Spine (Phila Pa 1976) 2005;30:1441e5.
- Gray DT, Deyo RA, Kreuter W, et al. Population-based trends in volumes and rates of ambulatory lumbar spine surgery. Spine (Phila Pa 1976) 2006;31:1957e63.
 Louw A, Diener I, Butler DS, Puentedura EJ. The effect of neuroscience education on pain, disability anxiety, and stress in chronic musculoskeletal pain. Arch Phys Ned Rehabil 2011;92:2041-56.
- anxiety, and stress in choroit mosculos/etilal and and an anxiety and stress in choroit mosculos/etilal and and an anxiety and stress in choroit mosculos/etilal pain. Arch Phys Med Rehabil 2011;92:2041-56.
 Louw A, Puentedura E, Therapeutic Neuroscience Education. USA: International Spine and Pain Institute; 2013.
- Lurie JD, Birkmeyer NJ, Weinstein JN. Rates of advanced spinal imaging and spine surgery. Spine.
 2003;28:616-620
- 2003;26:516-620 Martin BJ, Mirza SK, Comstock BA, et al. Are lumbar spine reoperation rates falling with greater use of fusion surgery and new surgical technology. Spine (Phila Pa 1976) 2007;32:2119e26 Martin BJ, Mirza SK, Comstock BA, et al. Reoperation rates following lumbar spine surgery and the influence of surgical procedures. Spine (Phila Pa 1976) 2007;32:382e7.

References

Monticone M, Ferrante S, Brayda Bruno M, et al. Management of catastrophising and kinesiophobia improves rehabilitation after fusion for lumbar spondylolisthesis and stenosis. A randomised controlled trial. *European Spine Journal* [serial online]. January 2014;23(1):87-95.
 Moseley, G. L. (2003). "Unravelling the barriers to reconceptualisation of the problem in chronic pain: the actual and perceived ability of patients and health professionals to understand the neurophysiology." J Pain4(4): 184-189.

184-189.
Oestergaard L, Nielsen C, Bünger C, Svidt K, Christensen F. The effect of timing of rehabilitation on physical performance after lumbar spinal fusion: a randomized clinical study. *European Spine Journal* [serial nine], *Jugust* 2013;22(8):1848-1890.
Rohlmann A, Claes LE, Bergmann G, et al. Comparison of intradiscal pressures and spinal fixator loads for different body positions and exercises. *Egropromics*. 2001;44:781-784.
Rohlmann A, Graichen F, Bergmann G. Loads on an internal spinal fixation device during physical therapy. *Phys Ther*. 2002;82:44-52.
Rushton A, Eveleigh G, Wright C, et al. Physichterapy rehabilitation following lumbar spinal fusion: a systematic review and meta-analysis of randomised controlled traits. *BMJ Open* [serial online]. July 24, 2012;22(4).

- 2012;2(4) Strongvist B, Fritzell P, Hagg O, et al. Follow-up of Lumbar Surgery in Sweden 2007, The Swedish National Spine Register. The Swedish Spinal Surgery Society, 2007. http://www.4s.nupdt/ Ryggregisterrapport_2000g.eng_version.pdf Weinstein JN, Lurie JO, Dison P, et al. United States trends and regional variations in lumbar spine surgery: 1992-2003. Spine (Phila Pa 1976) 2006;31:2707e14.