Lisfranc and Midfoot Injuries
A. Holly Johnson, M.D.
Massachusetts General Hospital
Harvard Medical School
Boston, MA

Disclosure
I have no potential conflicts to disclose.

Essential and nonessential joints
- Want to stiffen or maintain motion
- Lisfranc debate is culmination of this concept

Lisfranc Injuries
- Uncommon – only .2% of all fractures
- Commonly missed (20%)
- Need high degree of suspicion
- Late morbidity, consequences

Athletic Injury
- Increased rate over last decade, esp NFL
 - Athletes
 - Turf
 - Shoe wear
- 16% sports injuries occur in foot
 - Midfoot sprain – 4% football
 - 29% offensive linemen
- NFL Foot and Ankle Injury Task Force
Jacques Lisfranc de Saint-Martin (1787-1847)
- Famous French surgeon
- Innovator in general and gynaecologic surgery
- Napoleonic field surgeon
- Described midfoot injury:
 - Soldier falls off horse with foot caught in stirrup
 - Amputation through the midfoot for gangrene

Roman Arch
- Trapezoidal shape of MT bases
 - Dorsally wide, narrow plantarly
- Motion different between columns
 - 3.5mm medial
 - 6mm middle
 - 13mm lateral
- Injury most common at most stable – 2nd TMT joint

Ligamentous Anatomy
- Strong attachments
- Dorsal, Interosseous, plantar
- Longitudinal, oblique, transverse
- Long, obli connect cun-MT
- TV connects MT-MT
- Plantar lig strongest, stiffest

Lisfranc Ligament
- No TV 1st-2nd MT ligament
- Lisfranc ligament – medial cuneiform to base of 2nd MT
 - Interosseous
 - Plantar portion – thickest, strongest
 - Stabilizes pronation, abduction
 - Strongest, highest load to failure

Image from Watson, et al JAAOS 2010
Anatomic predisposition to injury

- Shallow medial mortise depth (Paicha et al., JBJS Br 2002)
- Ratio of 2nd MT:foot length - <29% (Gallagher et al., JBJS 2013)

Mechanism of Injury

- Direct
 - Crush injury
 - Dropped object

- Indirect
 - Forced abduction
 - Axial load on PF foot
 - Fall from height
 - MVA
 - Athletic injury

Classification

- Myerson FA 1986
 - For traumatic, severe injury
- Nunley AJSM 2002
 - For Sprains

Beware of the subtle Lisfranc!!

- Obvious for crush, high energy injury
- Pt may describe a pop
- Fell off a curb
- Slipped down the stairs
- Pile-up
- Ankle sprain that won’t get better
Physical Exam

- Variable degree of swelling
- Asymmetry
- Pain with weight bearing
- Midfoot tenderness
- Pain with forced pronation and abduction
- **Plantar midarch ecchymosis**

Imaging

- Plain XR – may be missed initially
- Weight bearing XR
- Contralateral foot

- Look for:
 - Alignment of columns
 - Medial border 3rd MT, lat cuneiform
 - Widening between 1st and 2nd ray
 - Dorsal subluxation
 - Fleck sign

Imaging

- XR normal – high suspicion – MRI
- Edema
- Tear
- Step-off
- Severe injury – CT for operative planning

Determine stability – stress radiographs

- May need sedation, in OR
- Pronation-abduction
- Flexion-Extension
- Compression of the midfoot
 - Helps confirm diastasis between cuneiforms or MT

- Myerson et al JBJC 2008
Treatment - nondisplaced

- WB XR normal
- MRI shows no step-off, fracture
- No displacement with stress (XR or OR)
- Need to prove it

Treatment

- Nunley 2002 AJSM
- Described a treatment algorithm based on his stages
- Retrospective study on 15 athletes

Treatment – Stable Injury

- Nonoperative treatment well-established
- NWB 4-6 weeks
 - Serial WB x-rays to confirm stable
 - When pain-free, stable XR, may WBAT
- Progress in boot until 8-10 weeks with orthotic
- Stiff-soled shoe, rigid orthotic for six months
- Resume cutting, twisting at 3-4 mos

MANAGE EXPECTATIONS:

Unstable Injury - Ligamentous vs. Fracture

Unstable Injury – Severe vs. Subtle

Primary Arthrodesis

- For intrarticular fracture
- Indicated for intraarticular injury, comminution
- Never fuse 4th, 5th TMTs
 - Pin x6 weeks
Traditional Treatment

- Anatomic Reduction a must
- Early – CRPP
- Later – ORIF (Seattle group)
- Earlier studies high complication rate, low satis with fusion
 - Muller et al FAI 2002:
 - 25 % nonunion
 - 50% RSD
 - Even ORIF only had 66% sats
 - "unusually high complications"
- Kuo et al, FAI 2002
 - ORIF with stable fixation
 - Anatomic reduction = less PT DJD
 - Ligamentous injury did poorly despite anatomic reduction
 - Fusion “may be a better option for patients with purely ligamentous injury.”

Primary Arthrodesis for Ligamentous Injuries

- ORIF vs Arthrodesis
 - Ligamentous LF
 - PRCT
 - 20 underwent ORIF
 - 21 Primary Arthrodesis, 1, 2, +/- 3 TMT
 - 42.5 mos avg f/u
 - % preinjury level 24 mos Satisfaction (very/dissats)
 - Arthrodesis 92% 16/0
 - ORIF 65% 8/6
 - 5/6 dissatisfied in ORIF underwent fusion
 - One nonunion in arthrodesis group

Authors’ Conclusions:
- Poor healing of oss-ligament interface
- Loss of correction
- Inor deformity
- DJD

Other Issues:
- 16/20 in ORIF underwent ROH
- High energy injuries both groups
 - 22 – MVA, snowmobile, ATV, dirt bike
 - 12 fell from height
 - 2 stirrup, 3 deep hole
 - Only 2 athletes (hockey, basketball)
- ***NOT athletic or low energy injuries
- Subsequent studies support equal or better outcomes with PA (Levine FAI 2012, Henning FAI 2009), less return to surgery
Joint Sparing vs Articular Screws

- No (unknown) long-term difference:
- Avoids articular disruptions
- Avoids screw breakage
- Larger approach
- Prominent
- Alberta et al. (FAI 2005)
 - Cadaver study
 - Similar ability to maintain reduction

Suture Button Fixation

- Minimal data – all cadaver studies
 - Vinod et al. JBJS 2009 (Industry sponsored) – equiv to screws
 - Pelt et al. FAI 2011 – equiv to screws
 - Ahmed et al. FAI 2010 – weaker than screws

Subtle or low energy injury

- Trauma data may not be so useful
- Primary arthrodesis for isolated low energy ligament disruption?
- Primary arthrodesis for high level athlete?

Subtle or low energy injury

- Same rules apply:
 - If displaced >2mm – needs stabilization
 - Anatomic reduction and fixation a must
 - Primary Arthrodesis not recommended in athletes despite the data
 - Bigger dissection
 - Difficult procedure
 - Need to maintain motion

Outcomes for Athletes

- No data comparing tx
- No long term results of ORIF in athletes
- Nunley et al AJSM 2002
 - All 15 were stage I, II
 - 8 had late ORIF
 - 93% excellent result (return to full activity)
- Chilvers et al FAI 2007
 - 5 gymnasts, 3 avail for f/u
 - Only one RTS

ORIF in Athletes

- Anatomic reduction a must!
 - Screws or bridging plates
 - Check stability
 - Postop:
 - NWB for 2-4 weeks
 - ROM when wounds healed
 - Pool, bike 6 weeks
 - Progress WB 6 weeks
 - CIC boot 8-10 weeks
 - Rigid orthotic in stiff shoe
 - ROH 3-6 mos postop
 - Cutting, twisting at 4-6 months
 - Typical return to elite sport by 6-10 mos
 - MANAGE EXPECTATIONS!
Missed Injury, late collapse

- Post-injury DJD – 25-58%
 - Better outcomes a/w accuracy of reduction
- Collapse of TMTs, midfoot
- Nunley – good results with delayed ORIF (before DJD and rigid collapse)

Missed Injury, late collapse

- Non-op treatment
 - Rocker-bottom shoe
 - Steel shank
 - Orthotic
 - Guided injections

Missed Injury, late collapse, DJD

- Arthrodesis
 - More difficult reduction
 - Bone quality poor
 - Nonunion rate higher

Late collapse after ORIF

- Coetzee reports this in ¼ of ORIF group
- May be associated with ROH
- May be associated with poor initial reduction

Late collapse after ORIF

- Closed reduction not adequate
- Symptomatic 2nd TMT DJD 1 year out

Conclusion

- Don’t miss the injury – high index of suspicion
- Understand the indications surgery
- Who is the right candidate for ORIF vs Fusion?
 - Still up for debate
- Need data collection on ORIF group beyond 2 years
Thank you