UCA

THE CLOSED CHAIN APPROACH TO SHOULDER REHABILITATION W. Steven Tucker, PhD, ATC University of Central Arkansas

Wurdbookeleal Institute 20th Annual Symposium, Bedford, NH September 14, 2013

Outline

- Background on common shoulder injuries
- Open Chain vs. Closed Chain for the shoulder
- Closed chain exercises: Examples and the evidence behind them
- Putting it all together: An example patient

Scapular Dyskinesis Scapular dyskinesis: abnormal movement of the scapula Scapular dysfunction is found in approximately 20% of rate or sufficiency and 100% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of states of the scapular dysfunction is found in approximately 20% of scapular dysfunction in approximately 20% of scapular dysfunct

70% of rotator cuff injuries and 100% of glenohumeral instability cases (Warner, et al. 1992).

Scapular Dyskinesis

This form of scapular dyskinesis has been associated with instability, impingement, SLAP lesions and rotator cuff tears (Kibler, 1991; Burkhart and Morgan, 1998; Burkhart, et al. 2000).

UCA

Open Kinetic Chain

Myers, et al. 2005, evaluated 10 common rubber tubing exercises. ER & IR at 0° abduction: serratus anterior activation was 18.0% & 20.5% MVIC. Exercises in which the GH joint was elevated at or above 90• elicited higher activation levels (• 66%).

OKC vs. CKC

- Patients with shoulder impingement: overactive upper trapezius and suppressed serratus anterior (Ludewig and Cook, 2000)
 - ...during OKC activities.
- We don't see the same muscle activation imbalance during CKC exercises (Tucker, et al. 2010).

	n = 15 overhead athletes w/ shoulder impingement (SI) n = 15 overhead athletes w/o shoulder impingement (NP) Performed 3 CKC exercises			
	Muscle	SI	NP	
	Middle trapezius	23.02±19.97	15.14±8.29	
	Serratus anterior	66.79±34.32	56.66±25.94	
	Upper trapezius	30.84±33.31	38.78±38.59	
	Lower trapezius	21.92±12.49	21.94±13.22	
	Units = %MVIC (Tucker, et al. 2010)			A

Cuff Link

- SA activation was >66% (Tucker, et al. 2005, 2008, 2010)
- Greater SA vs. push-up (Tucker, et al. 2010)
- Lower UT, MT & LT activation vs. push-up (Tucker, et al. 2011) Lower failure rate vs. push-up (Tucker, et al. 2008)

UCA

What we did...

- Treatment Plan:
- Strengthen and increase endurance of scapular stabilizers

UCA

- $\ensuremath{\mathtt{x}}$ Increase flexibility of pectoralis minor/major
- $\mbox{\tt $^{$}$}$ Increase core strength

What we did... First 30 days: Stretched: pectoralis minor, posterior RC/capsule OKC ex: resistance bands (IR & ER), PNF, prone retraction, rows, lat pull down, Body Blade®

- \bowtie CKC ex: push-up w/ plus, chair press-ups, floor and stability ball protraction, Cuff Link $^{\circledast}$

Take Home Points Why do CKC for injury prevention and rehab? Activation of the scapular stabilizers A common deficiency Can be progressed Incorporates the entire kinetic chain Hips, trunk and upper extremity

