Rehabilitation Considerations Following Ankle Fracture: Impact on Gait & Closed Kinetic Chain Function

David Nolan, PT, DPT, MS, OCS, SCS, CSCS

Objectives

- Describe selected kinetics & kinematics of the ankle complex
- Develop evidence-based therapeutic exercise program to maximize closed kinetic chain function following ankle fracture
- Discuss manual therapy interventions aimed at maximizing mobility of the ankle complex

Biokinesiology of the Ankle Complex

Talocrural Joint

- Mortise Joint
- 3 Articulations
 - Tibia – Fibula
 - Tibia – Talus
 - Fibula - Talus

Talocrural Joint

- Pitch of Axis
 - Average
 - 8° to transverse plane
 - Range
 - Up to 23° to transverse plane

- Pitch of Axis
 - Average
 - 20° to frontal plane
 - Range
 - 20°–30° to frontal plane
Tri-Plane Motion
- Pronation
 - Dorsiflexion
 • Sagittal
 - Abduction
 • Transverse
 - Eversion
 • Frontal
- Supination
 - Plantarflexion
 • Sagittal
 - Adduction
 • Transverse
 - Inversion
 • Frontal

Talocrural Joint
- Components of motion
 - OKC Pronation
 • DORSIFLEXION
 • ABDUCTION
 • Eversion
 - OKC Supination
 • PLANTARFLEXION
 • ADDUCTION
 • Inversion

Normal Gait: Ankle Kinetics & Kinematics

Gait Terminology

Gait Cycle Analysis: Ankle
- Loading Response:
 - Slight DF due to anterior tibialis working in swing phase for clearance
 - Plantarflexion (passive)
 • GRF vertical on heel
 - Rapid PF decelerated by:
 • Tibialis anterior
 • Extensor digitorum longus
 • Extensor hallucis longus

Gait Cycle Analysis: Ankle
- Mid-Stance:
 - Dorsiflexion (passive)
 • Tibia advances over fixed foot
 - Decelerated by gastroc and soleus
Gait Cycle Analysis: Ankle

- Terminal Stance – Pre-Swing (Propulsion)
 - Plantarflexion (passive)
 - Active for accelerated gait
 - Accelerated by gastroc and soleus
 - Resists DF during heel lift
 - Controls high GRF

Ankle Fracture

- Bimalleolar
 - Medial & lateral malleolus
- Trimalleolar
 - Medial & lateral malleolus
 - Posterior tibial malleolus
- Syndesmotic
 - Ligamentous complex of tibiofibular joint
 - High ankle sprain

Ankle Fracture

- Lateral Malleolus
 - Weight bearing varies
- Medial Malleolus
 - Management determined by displacement
 - Restricted weight bearing
- Posterior Malleolus
 - Common with lateral malleolus fracture
 - Shared ligamentous attachment
 - Posterior-inferior tibiofibular ligament

Immobilization & Weight Bearing

- Lin CWC et al. Cochrane Review 2012
 - “Rehabilitation for Ankle Fractures in Adults”
 - Removable immobilization & exercise
 - ↓ activity limitation
 - ↓ pain
 - ↑ dorsiflexion ROM
 - (+) Weight bearing with immobilization
 - ↑ dorsiflexion ROM

Immobilization & Weight Bearing

- Following ankle surgery
 - Active exercises accelerated return to work & ADL
 - Early weight bearing accelerated return to work & ADL
 - No difference in complication rates
 - Between exercise & immobilization
 - Between early & late weight bearing

Rehabilitation

- Pfeifer CG et al. Injury 2015
 - 209 Rehabilitation Protocols for ankle fractures
 - No consistency across rehab programs
- Moseley AM et al. JAMA 2015
 - Advice Group: OKC ankle ROM
 - Rehab Group: Ankle mobility & strengthening, Stepping exercises, Weight bearing & balancing
 - No difference between groups
 - **Limited PT (Week 1 = 2 visits, Weeks 2-4 = 1x/week)**
 - **1/3 advice group received out of trial PT**
Rehabilitation

 - Gait analysis
 - (1) immobilization removed
 - (2) 12 weeks after exercise-based rehab program
 - Significant improvements
 - Temporal and spatial gait parameters
 - Functional outcome (Olerud-Molander Ankle Score)

- Beckenkamp PR et al. JOSPT 2016
 - Following ankle fracture
 - ↓ Physical activity
 - ↑ time sitting
 - Long term health implications: ↑ risk (WHO)
 - Cardiovascular disease
 - Diabetes
 - Cancer
 - Depression

- Beckenkamp PR et al. JOSPT 2014
 - Reviewed 37 articles and converted outcomes to 100 point scale
 - Short term (1 month) 31.9
 - Short to medium term (6 months) 78.3
 - Long term (24 months) 86.6
 - Pain, stiffness & weakness present
 - Activity limitation was worse in older subjects & males

- Rehabilitation
 - Treatment
 - Impairment focused
 - Limited ankle dorsiflexion ROM
 - Hancock MJ et al. JOSPT. 2005
 - Weakness (approximately 60%)
 - Shaffer MA et al. Phys Ther. 2000
 - Uninvolved side is benchmark

Manual Therapy

- Manual Therapy ↑ DF ROM
 - Hoch MC & McKeon PO J Orthop Res. 2011
 - Vicenzino B et al. JOSPT. 2006

 - Manual therapy did not improve clinical or economic outcomes
 - Standard treatment of a single joint mobilization technique
 - Gr III AP glide of talus in DF
Painter EE et al. JOSPT 2015

- Case series of 11 patients (2 male) mean age 39.6 (18-64)
- Impairment based manual PT with targeted exercise
- Outcomes @ 4 & 12 weeks compared to baseline
 - LEFS ↑ 21.9 (p = .001)
 - Ankle Lunge Test ↑ 7.8cm (p = .001)

Talocrural Joint

- Distraction
 - Neutral calcaneus
 - Force at dorsal surface of talus
 - Force: Gentle → Manipulation

Talocrural Joint

- Posterior Glide
 - Stabilize tibia-fibula
 - Control DF-PF
 - Posterior force through talus
 - Consider plane of joint axis

Talocrural Joint

- Weight-Bearing Progression
 - Mobilization with Movement (MWM)
 - Posterior glide at talus
 - Control limb rotation with target

Gastrocnemius / Soleus

- Gait function
 - Gastrocnemius
 - Decelerate/control forward progression of tibia on talus
 - Soleus
 - Active around the time of heel strike
- Rehab focus
 - Flexibility
 - Prevent compensatory pronation at midfoot
 - Strength
 - Eccentric contraction key
 - Respect stage of healing / reactivity of tissue

Therapeutic Exercise Following Ankle Fracture

- Mobilization with Movement (MWM)
- Posterior glide at talus
- Control limb rotation with target

Gastrocnemius / Soleus

- **Flexibility**
 - Maintain supinatory bias
 - Inverted calcaneus
 - Prevent oblique midtarsal compensation

- **Strength**
 - Eccentric is key
 - Manual resistance
 - Resisted band
 - Weight bearing

Tibialis Posterior

- **Anatomical Function**
 - Inverter, adductor, plantar flexor of foot
- **Gait function**
 - Decelerate/control GRF moving foot into eversion & abduction
 - Greater activation in low arch foot types
- **Rehab focus**
 - **Strength**
 - Eccentric contraction key
 - Works in concert with peroneus longus

- **Strength**
 - TB resistance
 - Manual resistance
 - CKC progression

FDL / FHL

- **Anatomical Function**
 - Strong toe flexors
- **Gait function**
 - Stabilize the foot during midstance and late stance
- **Rehab focus**
 - **Strength**
 - Resist the distal phalanx with toe curl exercises

- **Strength**
 - Toe curls
 - “Short Foot” or “Cupping” exercises
 - CKC / Balance
Tibialis Anterior

• Anatomical Function
 – Strong ankle dorsiflexor
 – Prevents posterior sway during standing balance
• Gait function
 – Prevent foot slap after heel strike (eccentric)
 – Clear foot during swing phase (concentric)
• Rehab focus
 – Strength
 • Concentric & Eccentric important

Tibialis Anterior

• Strength
 – TB Resistance
 – Manual Resistance
 – CKC:
 • Squatting: Control DF (Eccentric) and prevent posterior body sway (Concentric)

EDL / EHL

• Anatomical Function
 – EDL: Evertor
 • Balances inversion of tibialis anterior
 – EHL: Extends proximal phalanx of great toe
• Gait function
 – Decelerate foot slap after heel strike (eccentric)
 – Clear foot during swing phase (concentric)
• Rehab focus
 – Strength
 • Location of resistance will determine muscle activation

EDL / EHL

• Strength
 – TB Resistance
 – Manual Resistance

Peroneals

• Anatomical Function
 – Abduct & evert the foot in OKC
• Gait function
 – Brevis
 • Stabilizes calcaneocuboid joint
 – Longus
 • Stabilize first ray as weight transfers from lateral to medial
• Rehab focus
 – Strength focus is OKC & CKC

Peroneals

• Strength
 – OKC:
 • TB Resistance
 • Manual Resistance
 – CKC:
 • Weight shift control
 • 1st ray vs ground
Plantar Intrinsic Group

- Anatomical Function
 - Individual origin / insertion but function as group
- Gait function
 - Flexibility
 - Shock absorption & balance
 - Rigidity
 - Propulsion
- Rehab focus
 - Midfoot control

Summary

- Prolonged functional limitation is common in patients with ankle fracture
- Consider mobility demands of gait and a kinetic chain approach to maximize ROM early in rehab course
- Integrate targeted therapeutic exercise to improve muscle activation and strength

THANK YOU